At FUROID ™️ we’ve started the derivation of iPSCs from Camelidae and the further development of our patented protocols from our hair project in order to present in Q4 2019 OUR PATENTED DE NOVO INVITRO WOOL CRUELTY FREE OBTAINED WITH ENHANCED PROPERTIES AND INSEPARABLY CONNECTED ANTI COUNTERFEIT PROPERTIES TO MARKET PARTICIPANTS.

Various studies showed that sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB) and teratoma formation assays which generated derivatives of all three germ layers. The generation of sheep iPSCs places sheep on the front lines of large animal tissue replications such as wool. 

FIG. 1: (A) Sheep iPSCs form embryoid bodies in suspension culture following withdrawal of hFGF, hLIF and Dox from culture media. Immunofluorescence staining shows differentiation of sheep iPSCs give rise to cells expressing markers of the three germ layers: (B) β III-Tubulin, (C) Desmin, and (D) Cytokeratin. Hematoxylin and eosin staining of teratomas derived from sheep iPSCs reveals the presence of tissues from all three germ layers: (E) glandular epithelium (endoderm), (F) muscle (mesoderm), and (G) neural epithelium (ectoderm). (H) Sheep iPSCs at passage 15 showed a normal karyotype of 54XX. Scale bars:  = 50 µm 



FIG. 2: Immunofluorescence staining demonstrates that sheep iPSC colonies are positive for expression of Oct4, Sox2, and Nanog, as well as the surface marker SSEA-4. Colonies were not observed to express SSEA-1, SSEA-3, Tra-1-60, or Tra-1-81. Scale bars: = 50 mm.




*Sheep Fibroblasts into Pluripotency under a Drug-Inducible Expression of Mouse-Derived Defined Factors Yang Li et al 2011